Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Psychiatry ; 27(12): 5213-5226, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36028572

RESUMO

The excitatory neurotransmitter glutamate shapes learning and memory, but the underlying epigenetic mechanism of glutamate regulation in neuron remains poorly understood. Here, we showed that lysine demethylase KDM6B was expressed in excitatory neurons and declined in hippocampus with age. Conditional knockout of KDM6B in excitatory neurons reduced spine density, synaptic vesicle number and synaptic activity, and impaired learning and memory without obvious effect on brain morphology in mice. Mechanistically, KDM6B upregulated vesicular glutamate transporter 1 and 2 (VGLUT1/2) in neurons through demethylating H3K27me3 at their promoters. Tau interacted and recruited KDM6B to the promoters of Slc17a7 and Slc17a6, leading to a decrease in local H3K27me3 levels and induction of VGLUT1/2 expression in neurons, which could be prevented by loss of Tau. Ectopic expression of KDM6B, VGLUT1, or VGLUT2 restored spine density and synaptic activity in KDM6B-deficient cortical neurons. Collectively, these findings unravel a fundamental mechanism underlying epigenetic regulation of synaptic plasticity and cognition.


Assuntos
Epigênese Genética , Histona Desmetilases com o Domínio Jumonji , Plasticidade Neuronal , Proteínas tau , Animais , Camundongos , Cognição/fisiologia , Ácido Glutâmico/metabolismo , Histonas/metabolismo , Histona Desmetilases com o Domínio Jumonji/metabolismo , Plasticidade Neuronal/genética , Plasticidade Neuronal/fisiologia , Sinapses/metabolismo , Proteína Vesicular 1 de Transporte de Glutamato/genética , Proteína Vesicular 1 de Transporte de Glutamato/metabolismo , Proteína Vesicular 2 de Transporte de Glutamato/genética , Proteína Vesicular 2 de Transporte de Glutamato/metabolismo , Proteínas tau/metabolismo
2.
J Neurochem ; 160(1): 74-87, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34241907

RESUMO

Cell death is a key feature of neurological diseases, including stroke and neurodegenerative disorders. Studies in a variety of ischemic/hypoxic mouse models demonstrate that poly(ADP-ribose) polymerase 1 (PARP-1)-dependent cell death, also named PARthanatos, plays a pivotal role in ischemic neuronal cell death and disease progress. PARthanatos has its unique triggers, processors, and executors that convey a highly orchestrated and programmed signaling cascade. In addition to its role in gene transcription, DNA damage repair, and energy homeostasis through PARylation of its various targets, PARP-1 activation in neuron and glia attributes to brain damage following ischemia/reperfusion. Pharmacological inhibition or genetic deletion of PARP-1 reduces infarct volume, eliminates inflammation, and improves recovery of neurological functions in stroke. Here, we reviewed the role of PARP-1 and PARthanatos in stroke and their therapeutic potential.


Assuntos
AVC Isquêmico/metabolismo , AVC Isquêmico/patologia , Parthanatos/fisiologia , Poli(ADP-Ribose) Polimerase-1/metabolismo , Animais , Humanos
3.
Cell Mol Life Sci ; 79(1): 39, 2021 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-34921640

RESUMO

Traumatic brain injury (TBI), often induced by sports, car accidents, falls, or other daily occurrences, is a primary non-genetically related risk factor for the development of subsequent neurodegeneration and neuronal cell death. However, the molecular mechanisms underlying neurodegeneration, cell death, and neurobehavioral dysfunction following TBI remain unclear. Here, we found that poly(ADP-ribose) polymerase-1 (PARP-1) was hyperactivated following TBI and its inhibition reduced TBI-induced brain injury. Macrophage migration inhibitory factor (MIF), a newly identified nuclease involved in PARP-1-dependent cell death, was translocated from the cytosol to the nucleus in cortical neurons following TBI and promoted neuronal cell death in vivo. Genetic deletion of MIF protected neurons from TBI-induced dendritic spine loss, morphological complexity degeneration, and subsequent neuronal cell death in mice. Moreover, MIF knockout reduced the brain injury volume and improved long-term animal behavioral rehabilitation. These neuroprotective effects in MIF knockout mice were reversed by the expression of wild-type MIF but not nuclease-deficient MIF mutant. In contrast, genetic deletion of MIF did not alter TBI-induced neuroinflammation. These findings reveal that MIF mediates TBI-induced neurodegeneration, neuronal cell death and neurobehavioral dysfunction through its nuclease activity, but not its pro-inflammatory role. Targeting MIF's nuclease activity may offer a novel strategy to protect neurons from TBI.


Assuntos
Lesões Encefálicas Traumáticas/metabolismo , Oxirredutases Intramoleculares/fisiologia , Fatores Inibidores da Migração de Macrófagos/fisiologia , Degeneração Neural/metabolismo , Poli(ADP-Ribose) Polimerase-1/fisiologia , Animais , Morte Celular , Masculino , Camundongos , Camundongos Knockout
4.
Mol Neurodegener ; 16(1): 25, 2021 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-33853653

RESUMO

BACKGROUND: Apoptosis-inducing factor (AIF), as a mitochondrial flavoprotein, plays a fundamental role in mitochondrial bioenergetics that is critical for cell survival and also mediates caspase-independent cell death once it is released from mitochondria and translocated to the nucleus under ischemic stroke or neurodegenerative diseases. Although alternative splicing regulation of AIF has been implicated, it remains unknown which AIF splicing isoform will be induced under pathological conditions and how it impacts mitochondrial functions and neurodegeneration in adult brain. METHODS: AIF splicing induction in brain was determined by multiple approaches including 5' RACE, Sanger sequencing, splicing-specific PCR assay and bottom-up proteomic analysis. The role of AIF splicing in mitochondria and neurodegeneration was determined by its biochemical properties, cell death analysis, morphological and functional alterations and animal behavior. Three animal models, including loss-of-function harlequin model, gain-of-function AIF3 knockin model and conditional inducible AIF splicing model established using either Cre-loxp recombination or CRISPR/Cas9 techniques, were applied to explore underlying mechanisms of AIF splicing-induced neurodegeneration. RESULTS: We identified a nature splicing AIF isoform lacking exons 2 and 3 named as AIF3. AIF3 was undetectable under physiological conditions but its expression was increased in mouse and human postmortem brain after stroke. AIF3 splicing in mouse brain caused enlarged ventricles and severe neurodegeneration in the forebrain regions. These AIF3 splicing mice died 2-4 months after birth. AIF3 splicing-triggered neurodegeneration involves both mitochondrial dysfunction and AIF3 nuclear translocation. We showed that AIF3 inhibited NADH oxidase activity, ATP production, oxygen consumption, and mitochondrial biogenesis. In addition, expression of AIF3 significantly increased chromatin condensation and nuclear shrinkage leading to neuronal cell death. However, loss-of-AIF alone in harlequin or gain-of-AIF3 alone in AIF3 knockin mice did not cause robust neurodegeneration as that observed in AIF3 splicing mice. CONCLUSIONS: We identified AIF3 as a disease-inducible isoform and established AIF3 splicing mouse model. The molecular mechanism underlying AIF3 splicing-induced neurodegeneration involves mitochondrial dysfunction and AIF3 nuclear translocation resulting from the synergistic effect of loss-of-AIF and gain-of-AIF3. Our study provides a valuable tool to understand the role of AIF3 splicing in brain and a potential therapeutic target to prevent/delay the progress of neurodegenerative diseases.


Assuntos
Processamento Alternativo , Fator de Indução de Apoptose/fisiologia , Mitocôndrias/metabolismo , Degeneração Neural/genética , Adolescente , Adulto , Idoso , Sequência de Aminoácidos , Animais , Fator de Indução de Apoptose/deficiência , Fator de Indução de Apoptose/genética , Células Cultivadas , Criança , Modelos Animais de Doenças , Éxons/genética , Feminino , Lobo Frontal/química , Mutação com Ganho de Função , Edição de Genes , Técnicas de Introdução de Genes , Humanos , Lactente , Recém-Nascido , Infarto da Artéria Cerebral Média/genética , Infarto da Artéria Cerebral Média/metabolismo , Mutação com Perda de Função , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Mutantes , Pessoa de Meia-Idade , Neurônios/metabolismo , Oxirredução , Consumo de Oxigênio , Isoformas de Proteínas/genética , Isoformas de Proteínas/fisiologia
5.
Huan Jing Ke Xue ; 42(4): 1626-1635, 2021 Apr 08.
Artigo em Chinês | MEDLINE | ID: mdl-33742797

RESUMO

In order to reveal the chemical composition characteristics and pollution sources of fine particulate matter (PM2.5) in autumn and winter in Yuncheng, PM2.5 samples were continuously collected using a four-channel small-flow particulate sampler from October 15, 2018 to March 15, 2019. The study prediminantly analyzed the chemical components of water-soluble ions, elemental carbon, organic carbon, and metal elements. Additionally, the chemical mass reconstruction method of particulate matter and the positive matrix factorization model (PMF) were combined for an in-depth discussion. During the sample period, the PM2.5 mass concentrations range was 29.37-370.11 µg·m-3, and 101 days during the sampling period exhibited concentrations that were higher than the secondary standard in China's Ambient Air Quality Standards (GB 3095-2012), with an exceeding rate of 70.63%. These results indicate that the air pollution in Yuncheng in autumn and winter is serious. According to the air quality index (AQI), the collected samples are classified as clean, light-moderate pollution, and heavy-severe pollution. Water-soluble ions, OC, EC and metal elements account for 40%, 19%, 5%, and 7% on clean days, 46%, 18%, 4%, and 5% on days with light-moderate pollution, and 46%, 21%, 4%, and 4% on days with heavy-severe pollution, respectively. Secondary ions NO3-, SO42-, and NH4+ are the primary components of water-soluble ions, accounting for 81% (clean days), 87% (light-moderate pollution), and 87% (heavy-severe pollution) of the total ion concentration, respectively. The OC/EC ratios during the sampling period were 3.78 (clean days), 4.02 (light-moderate pollution), and 5.37 (heavy-severe pollution). With the intensification of pollution, the pollution of secondary organic aerosols in the atmosphere becomes increasingly serious. In addition, as the air pollution increased, the concentration of Fe and Cr elements gradually decreased, while the concentration of other metal elements showed an overall upward trend. The results of the chemical mass reconstruction demonstrate that among the different pollution levels of atmospheric PM2.5 in Yuncheng, the mass percentages of secondary inorganic salt, sea salt, heavy metals, mineral dust, construction dust, organic matter, and elemental carbon were 36%, 2%, 2%, 8%, 1%, 33%, and 5% (clean days), 41%, 1%, 1%, 5%, 0.01%, 31%, and 5% (light-moderate pollution), and 41%, 1%, 1%, 4%, 0.004%, 34%, and 4% (heavy-severe pollution). The proportion of secondary inorganic ions increased and mineral dust decreased with the deterioration of air quality. The PMF analysis results suggest that secondary related sources, coal combustion sources, vehicle exhaust sources, biomass burning, and secondary organic matter are the predominant sources of PM2.5 during serious air pollution in Yuncheng.

6.
Sci Total Environ ; 710: 136304, 2020 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-31927286

RESUMO

Crop residue burning in China increased significantly in the last decade, especially it took up a majority in Northeast China, which plays an important role of severe haze pollution. Hence, two main types of crop residues (corn and rice straw) were chosen to characterize the particle number concentration, chemical components of fine particulate matter and optical properties of carbonaceous aerosols by a suite of fast-response online portable instruments, together with offline sampling and analysis, during the field-based combustion experiments in Northeast China. For the range of 250 and 2500 nm, more particles were emitted from rice straw burning than those from corn straw burning, and the time-averaged number concentration of particles during the flaming process was approximately 2 times higher than that during the smoldering process for these two straws. Organic carbon (OC), elemental carbon (EC) and water-soluble ions were the most abundant components and accounted for 42.5 ± 7.5%, 7.7 ± 1.7% and 18.0 ± 3.4% of the PM2.5, respectively. Furthermore, rice straw burning emitted higher OC and lower Cl- and K+ than those from corn straw burning. The average absorption Ångström exponent (AAE) of carbonaceous aerosols was 2.1 ± 0.3, while the AAE of brown carbon (BrC) was 4.7 ± 0.4 during the whole burning process. On average, BrC contributed to 63% and 20% of the total light absorption at 375 nm and 625 nm, respectively. Parameterization of BrC absorption revealed that the fraction of absorption from BrC has a reasonably good correlation with EC/OC (-0.84) and AAE (0.94) at 375 nm. Generally, combustion conditions can affect the optical properties of carbonaceous aerosols, and a negative correlation (-0.77) was observed between the AAE and modified combustion efficiency; in addition, the percentage of absorption due to BrC were lower at the flaming phase.

7.
Huan Jing Ke Xue ; 40(11): 4841-4846, 2019 Nov 08.
Artigo em Chinês | MEDLINE | ID: mdl-31854549

RESUMO

To understand the pollution characteristics of aromatic compounds in Shijiazhuang, PM2.5 samples were collected day and night for 30 days from September 18 to October 17, 2016. Qualitative and quantitative analyses were conducted using gas chromatography-mass spectrometry (GC-MS). The results showed that total average concentration of aromatic compounds was 33.5 ng·m-3, lower than that of levoglucosan (487 ng·m-3). Concentration of nitro-aromatic compounds was the highest (20.4 ng·m-3), followed by aromatic acids (9.94 ng·m-3) and aromatic aldehydes (3.14 ng·m-3). Influenced by the decrease in the boundary layer and temperature, concentration of 8 substances during night was higher than during the day. There was a significant positive correlation between levoglucosan and nitro-aromatic, aromatic aldehyde, and aromatic acid compounds, with correlation coefficients (r) of 0.6829, 0.6443, and 0.6782, respectively, indicating that biomass burning is an important primary source of aromatic compounds that directly affects their concentrations in the atmosphere. Based on the analysis of daily variation trends in total concentration of aromatic compounds and the backward trajectory model, it was found that the pollution of aromatic compounds in Shijiazhuang in autumn was affected by regional transportation and local emissions.

8.
Huan Jing Ke Xue ; 40(6): 2501-2509, 2019 Jun 08.
Artigo em Chinês | MEDLINE | ID: mdl-31854639

RESUMO

Atmospheric PM2.5 pollution and ambient air quality were investigated in Beijing, and the ecological risks of the trace heavy metals in PM2.5 were analyzed. PM2.5 samples were collected from Dongzhimen and Huairou by a middle volume sampler, and 16 kinds of trace metals were determined by inductively couple plasma-mass spectrometry (ICP-MS). The results showed that the average concentration of PM2.5 in the urban area was 92.35 µg·m-3, and the number of days higher than the Ambient Air Quality Standards (GB 3095-2012) accounted for 41.7% of the total number of days. The average concentration of PM2.5 in the suburban area was 70.90 µg·m-3, and the standard exceedance rate was 31.7%. In general, the spatial and temporal distributions of heavy metals were as follows:nighttime > daytime; urban area > suburban area; winter > autumn > spring > summer. The enrichment factors for Pb, As, Zn, Ni, and Cu in the urban area and Pb, As, Zn, Cr, Ni, and Cu in the suburban area indicated that most came from anthropogenic sources. The result for the geoaccumulation index indicated that Ni is affected by anthropogenic sources and natural resources, while Cu, Zn, As, Cd, and Pb might have been derived from human activities. The potential ecological risk of Cu, Zn, Pb, and Cd was high, while the degree of ecological harm posed by Cd was extremely strong.

9.
Stroke Vasc Neurol ; 3(1): 1-8, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29600001

RESUMO

Introduction: Cerebral ischaemia-induced depression is among the most frequent neuropsychiatric consequences and adversely impact the prognosis and recovery of patients. Although several brain regions have been implied in the development of ischaemia-induced depression, the brain region-specific neural cell apoptosis pathways have not been clarified yet. Methods: In this study, bilateral internal carotid artery occlusion (BICAO) mouse model was established to induce cerebral ischaemia. Sucrose preference, tail suspension and forced swim tests were conducted on mice at 7, 21 and 30 days after BICAO treatment. In addition, brain regional ischaemic neuron loss was investigated by using immunofluorescent staining of neuronal nuclei (NeuN) and caspase-8/-9-dependent cell apoptosis was also examined by western blot analysis. Results: BICAO-induced cerebral ischaemia resulted in decreased sucrose preference and increased immobility times, which were representative depressive-like behaviours of mice until 30 days after BICAO treatment compared with Sham-operated mice. This outcome was associated with significant neuron loss by using immunofluorescent staining and increased cleavage levels of pro-caspase-3/-8/-9, but not pro-caspase-12, by western blot analysis in hypothalamus, midbrain, prefrontal cortex and hippocampus of mice. Conclusions: This study showed that BICAO-induced ischaemia caused depressive-like behaviours and caspase-8/-9-dependent neural cell apoptosis in several brain regions, including hypothalamus and midbrain of mice.


Assuntos
Apoptose , Comportamento Animal , Isquemia Encefálica/etiologia , Encéfalo/enzimologia , Estenose das Carótidas/complicações , Caspase 8/metabolismo , Caspase 9/metabolismo , Depressão/etiologia , Neurônios/enzimologia , Animais , Encéfalo/patologia , Encéfalo/fisiopatologia , Isquemia Encefálica/enzimologia , Isquemia Encefálica/patologia , Isquemia Encefálica/psicologia , Estenose das Carótidas/enzimologia , Estenose das Carótidas/patologia , Estenose das Carótidas/psicologia , Depressão/enzimologia , Depressão/patologia , Depressão/psicologia , Modelos Animais de Doenças , Preferências Alimentares , Masculino , Camundongos Endogâmicos C57BL , Atividade Motora , Neurônios/patologia , Transdução de Sinais , Natação
10.
Huan Jing Ke Xue ; 39(12): 5315-5322, 2018 Dec 08.
Artigo em Chinês | MEDLINE | ID: mdl-30628374

RESUMO

To understand the evolution of the physical and chemical properties of dust aerosols in the atmosphere, the concentrations and chemical compositions of differently sized particles were continuously observed and analyzed using an ion chromatograph and carbonaceous analyzer during the outbreak of dust in May 2017 in Beijing. The concentrations of total suspended particulate (TSP), water-soluble organic carbon (WSOC), elemental carbon (EC), OC, and water-soluble inorganic ions were (2237.59±681.49), (29.90±18.05), (1.46±3.05), (67.35±29.07), and (136.75±46.38) µg·m-3 during the dust period, respectively, and significantly exceeded that of the non-dust period, except for EC. The Na+, NH4+, K+, Mg2+, Ca2+, Cl-, NO3-, SO42-, and WSOC concentrations during the dust storm period were 11.55, 3.00, 14.88, 14.89, 9.40, 4.60, 2.40, 3.91, and 1.83 times higher than that during the non-dust period. The growth of crustal ions, such as Ca2+ and K+, was notably the largest and NH4+ and NO3- were minimal. The size distribution indicates that crustal ions primarily occur in the coarse mode during the whole sampling campaign. The SO42- and NO3- ions are slightly bimodal during the dust storm, with a dominant peak in the coarse mode at 4.7-5.8 µm and a very minor peak in the fine mode with a size range of 0.43-0.65 µm. During the non-dust period, SO42- is the dominant mode in the fine mode, while NO3- changes little compared with that during the dust period, which indicates that heterogeneous reaction with crustal ions is the main formation mechanism of NO3- in the coarse mode. A significant positive correlation was observed between SO42- and the sum of crustal ions during the dust period, indicating that the source of SO42- during the dust period is remote transmission of the dust storm. During the non-dust period, the positive correlation of SO42- with NH4+ indicates that secondary formation is the main source of SO42-. Based on correlation analysis of NO3- with crustal ions and NH4+, both remote transmission and secondary formation are the sources of NO3- during the dust storm and heterogeneous reactions are predominant during the non-dust period.

11.
Neurochem Res ; 42(10): 2814-2825, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28597398

RESUMO

Conventional protein kinase C (cPKC)γ participated in cerebral hypoxic preconditioning-induced neuroprotection and affected the neurological outcome of ischemic stroked mice. As an independent predictor of ischemic stroke, the internal carotid artery occlusion (ICAO)-caused brain-regional ischemic injury may worsen the neurological outcome of patients. However, the brain-regional ischemic vulnerability and its underlying mechanism remain unclear. In this study, the bilateral ICAO (BICAO) model was applied in cPKCγ wild type (WT) and knockout (KO) mice to determine the cPKCγ impact on brain-regional ischemic vulnerability. The arterial spin labeling (ASL) imaging results showed that 7 days BICAO-induced global ischemia could cause significant blood perfusion loss in prefrontal cortex (69.13%), striatum (61.69%), hypothalamus (67.36%), hippocampus (69.82%) and midbrain (40.53%) of WT mice, along with neurological deficits. Nissl staining and Western blot results indicated that hypothalamus and midbrain had more severe neural cell loss than prefrontal cortex, striatum and hippocampus, which negatively coincided with endogenous cPKCγ protein levels but not blood perfusion loss and cPKCγ membrane translocation levels. Furthermore, we found that cPKCγ KO significantly aggravated the neuron loss in prefrontal cortex, striatum and hippocampus and abolish the regional ischemic vulnerability by using immunofluorescent staining with neuron-specific marker NeuN. Similarly, cPKCγ KO also significantly increased Caspase-3, -8 and -9 cleavage levels in prefrontal cortex, striatum, hippocampus, hypothalamus and midbrain of mice with 24 h BICAO. These results suggested that hypothalamus and midbrain are more vulnerable to ischemia, and endogenous cPKCγ affects the regional ischemic vulnerability through modulating Caspase-8 and -9 dependent cell apoptosis.


Assuntos
Isquemia Encefálica/metabolismo , Encéfalo/metabolismo , Isquemia/metabolismo , Proteína Quinase C/metabolismo , Animais , Precondicionamento Isquêmico/métodos , Masculino , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Neuroproteção/fisiologia
12.
Neurol Res ; 39(6): 552-558, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28441917

RESUMO

BACKGROUND: Interleukin (IL)-17A was reported to be involved in the development of post-ischemic stroke inflammatory response and functional recovery. However, the IL-17A dynamic changes in serum/cerebrospinal fluid (CSF) and its role in neuronal injury following ischemic stroke are unclear. METHODS: In vivo ischemic stroke was induced by 1 h of middle cerebral artery occlusion (MCAO) and 6 h-7 d reperfusion (R) in mice, while in vitro stroke was induced by 1 h oxygen-glucose deprivation (OGD)/24 h reoxygenation (R) in cultured cortical neurons. Enzyme-linked immunosorbent assay (ELISA) and double-labeled immunofluorescence of IL-17A with neuron (NeuN), astrocyte (GFAP) and microglia (Iba-1)-specific markers were used to determine the IL-17A levels in serum/CSF and neural cell type. RESULTS: The ELISA results showed that IL-17A significantly increased both in peri-infarct region (p < 0.001) and CSF (p < 0.05) following 1 h MCAO/R 12 h. The levels of IL-17A in serum increased at R 1 d (p < 0.05) and peaked at R 3 d (p < 0.001) after 1 h MCAO. Immunofluorescent staining demonstrated that IL-17A co-localized with GFAP in peri-infarct regions. In addition, recombinant rIL-17A could aggravate ischemic injuries at dose-dependent manner in 1 h OGD/R 24 h-treated neurons companying with the increase of IL-17A receptor il-17RA mRNA (p < 0.001) and IL-17R protein levels. CONCLUSION: We firstly reported astrocytic IL-17A peaks in CSF within 12 h and in serum at 3 d reperfusion after ischemic stroke. IL-17A may exaggerate neuronal injuries through its receptor IL-17R at early stage of ischemic stroke.


Assuntos
Isquemia Encefálica/metabolismo , Interleucina-17/sangue , Interleucina-17/líquido cefalorraquidiano , Acidente Vascular Cerebral/metabolismo , Animais , Modelos Animais de Doenças , Infarto da Artéria Cerebral Média/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Traumatismo por Reperfusão/metabolismo
13.
Aging Dis ; 8(1): 85-100, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28203483

RESUMO

Galanin (GAL) plays key role in many pathophysiological processes, but its role in ischemic stroke remains unclear. Here, the models of 1 h middle cerebral artery occlusion (MCAO)/1-7 d reperfusion (R)-induced ischemic stroke and in vitro cell ischemia of 1 h oxygen-glucose deprivation (OGD)/24 h reoxygenation in primary cultured cortical neurons were used to explore GAL's effects and its underlying mechanisms. The results showed significant increases of GAL protein levels in the peri-infarct region (P) and infarct core (I) within 48 h R of MCAO mice (p<0.001). The RT-qPCR results also demonstrated significant increases of GAL mRNA during 24-48 h R (p<0.001), and GAL receptors GalR1-2 (but not 3) mRNA levels in the P region at 24 h R of MCAO mice (p<0.001). Furthermore, the significant decrease of infarct volume (p<0.05) and improved neurological outcome (p<0.001-0.05) were observed in MCAO mice following 1 h pre- or 6 h post-treatment of GAL during 1-7 d reperfusion. GalR1 was confirmed as the receptor responsible for GAL-induced neuroprotection by using GalR2/3 agonist AR-M1896 and Lentivirus-based RNAi knockdown of GalR1. GAL treatment inhibited Caspase-3 activation through the upstream initiators Capsases-8/-12 (not Caspase-9) in both P region and OGD-treated cortical neurons. Meanwhile, GAL's neuroprotective effect was not observed in cortical neurons from conventional protein kinase C (cPKC) γ knockout mice. These results suggested that exogenous GAL protects the brain from ischemic injury by inhibiting Capsase-8/12-initiated apoptosis, possibly mediated by GalR1 via the cPKCγ signaling pathway.

14.
Transl Stroke Res ; 7(6): 497-511, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27510769

RESUMO

We have reported that neuron-specific conventional protein kinase C (cPKC)γ is involved in the development of cerebral hypoxic preconditioning (HPC) and the neuroprotection against ischemic injuries, but its molecular mechanism is unclear. In this study, the adult and postnatal 24 h C57BL/6J wild-type (cPKCγ+/+) and cPKCγ knockout (cPKCγ-/-) mice were respectively used to establish the models of middle cerebral artery occlusion (MCAO)-induced ischemic stroke in vivo and oxygen-glucose deprivation (OGD)-treated primarily cultured cortical neurons as cell ischemia in vitro. The results showed that cPKCγ knockout could increase the infarct volume and neuronal cell loss in the peri-infarct region, and enhance the neurological deficits, the impaired coordination, and the reduced muscle strength of mice following 1 h MCAO/1-7 days reperfusion. Meanwhile, cPKCγ knockout significantly increased the conversion of LC3-I to LC3-II and beclin-1 protein expression, and resulted in more reductions in P-Akt, P-mTOR, and P-S6 phosphorylation levels in the peri-infarct region of mice with ischemic stroke. The autophagy inhibitor BafA1 could enhance or reduce neuronal cell loss in the peri-infarct region of cPKCγ+/+ and cPKCγ-/- mice after ischemic stroke. In addition, cPKCγ knockout and restoration could aggravate or alleviate OGD-induced neuronal ischemic injury in vitro through Akt-mTOR pathway-mediated autophagy. These results suggested that cPKCγ-modulated neuron-specific autophagy improves the neurological outcome of mice following ischemic stroke through the Akt-mTOR pathway, providing a potential therapeutic target for ischemic stroke.


Assuntos
Autofagia/genética , Neurônios/metabolismo , Proteína Quinase C/metabolismo , Transdução de Sinais/genética , Acidente Vascular Cerebral/patologia , Serina-Treonina Quinases TOR/metabolismo , Animais , Isquemia Encefálica/complicações , Isquemia Encefálica/genética , Hipóxia Celular/genética , Células Cultivadas , Córtex Cerebral/citologia , Infarto Cerebral/etiologia , Modelos Animais de Doenças , Regulação da Expressão Gênica/genética , Glucose/deficiência , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Doenças do Sistema Nervoso/etiologia , Neurônios/patologia , Proteína Quinase C/genética , Acidente Vascular Cerebral/etiologia , Acidente Vascular Cerebral/genética , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...